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1. Introduction

The AdS/CFT correspondence provides an alternative way to study the strongly coupled

regime of gauge theories via gravity duals. The original statement of the AdS/CFT corre-

spondence identifies N = 4 supersymmetric Yang-Mills with IIB strings on AdS5×S5 [1, 2].

At finite temperature the gravity side is described by nonextremal D3 branes and the qual-

itative matching of the properties was one of the key observations in the understanding

and eventual formulation of the AdS/CFT correspondence [3]. Other interesting aspects

of finite temperature theories, as seen by the AdS/CFT correspondence were discussed by

Witten [4]. In particular, the Hawking-Page phase transition in the gravity side was related

to the confinement/deconfinement transition on the field theory side.
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In a series of papers, Klebanov and collaborators [5 – 10] developed a gravity theory

that encodes interesting field theory phenomena like chiral symmetry breaking and confine-

ment. The class of Klebanov-Tseytlin (KT) solutions are solutions of IIB supergravity with

nontrivial metric and F3,H3 and F5 forms. A phenomenologically very attractive property

of the supergravity solution is that it encodes the logarithmic running of a gauge coupling

in field theory. It does so via a varying B2 field which is compensated by a constant F3

flux through a 3-cycle. The five-form, which is constant in most solutions, varies according

to the Bianchi identity dF5 = H3 ∧ F3 and generates a varying flux as
∫

Σ5
F5 depends on

the radial coordinate. The supergravity solution therefore has varying flux.

The finite temperature phase of such theory is certainly very interesting and has been

tackled in various papers including [11 – 13]. In particular, reference [13] constructed a

perturbative solution whose regime of validity is restricted to high temperature and small

value of the F3 flux:
∫

Σ3
F3 = P . Knowing the solution only asymptotically in the radial

coordinate and for a specific regime of parameters prevents us from extracting the full

thermodynamics and from being able to understand possible phase transitions. In this

paper we construct numerical solutions with regular finite-area horizons and nonvanishing

values of the five and three-form fluxes. In general we find that the solutions have horizons

of the form of the nonextremal D3 branes and in the other asymptotic region are particular

generalizations of the KT class of solutions with the expected logarithmic behavior of the

fields.

Although we have motivated the study of these backgrounds from the AdS/CFT point

of view it is worth mentioning that from the purely gravitational point of view these

are novel backgrounds. Black holes with varying flux have not been studied outside the

context of AdS/CFT. These black holes pose interesting problems in the gravitational sense.

For example, the definition of conserved charges is ambiguous [14]. Recently, a better

understanding of their thermodynamics and other properties was provided in [15, 16]. Our

study might also be of interest to numerical relativists given that the qualitative properties

of the solution strongly depend on the parameters and initial conditions. For instance, we

intuitively expect the existence of the horizon to depend on various parameters including

the temperature itself. For very low temperature we expect that the solution will either

develop singularities or be suppressed with respect to the Klebanov-Strassler background.

Numerical methods are particularly suited to tackle this kind of problems.

Strictly speaking, our result is relevant for a finite temperature field theory that has

N = 1 supersymmetry at zero temperature. Interestingly, this theory is confining and we

expect that this line of research might eventually provide a framework for understanding

RHIC physics.

The organization of the paper is as follows. In section 2 we present the Ansatz for the

metric and form fields involved in the solution and reduce the ten-dimensional problem to

a system of equations depending only on the radial coordinate. Section 2 also contains

the analytic form of various known solutions. In section 3 we present a description of the

numerical method and study numerically the known solutions presented in section 2. The

error of the numerical approach is estimated as the square root of the square difference

between the known analytical solutions and our numerical solutions. We establish that
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typically this error is χ < 10−13. Section 4 contains our main result which is a numerical

solution with regular horizon of finite area and three-form flux turned on top of the standard

five-form. We conclude in section 5. In appendix A we discussed the geodesic behavior of

various typical solutions to show how these features can be used to identify properties of

the new solution.

2. Review of gravity backgrounds with varying flux

In this section we describe the setup from the ten-dimensional point of view and reduce it

to a system of ordinary differential equations. The work presented in this section is largely

a review of [12, 13] and we refer the reader to those papers for the original presentation

and details. Our intention is to be self-contained since we are going to use these analytical

solutions to calibrate the numerical method.

The main idea in constructing the solution is to replace S5 by a five dimensional

manifold known as T 1,1 which is topologically a product of a 2- and a 3-sphere. This

manifold will be parametrized by coordinates (ψ, θ1, φ1, θ2, φ2). The Ansatz for a nonzero

temperature generalization of the KT solution contains various fields. The construction of

the Ansatz follows directly the one presented originally in [12]. For the metric we consider

a generalization consistent with the U(1) symmetry generated by ψ-rotations.∗ The Ansatz

in question depends on four functions x, y, z, w of the radial coordinate denoted by u:

ds2 = e2z(−e−6xdX2
0 + e2xdXidX

i) + e−2zds2
6 , (2.1)

where

ds2
6 = e10ydu2 + e2y(dM5)2 ,

(dM5)2 = e−8we2
ψ + e2w

(
e2
θ1 + e2

φ1
+ e2

θ2 + e2
φ2

)
≡ e2wds2

5. (2.2)

The Funfbein is:

eψ =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) , eθi =

1√
6
dθi , eφi =

1√
6

sin θidφi . (2.3)

The coordinate X0 represents time and X i are the 3 longitudinal directions of the 3-

brane. The qualitative meaning of the metric functions x, y, w and z can be clarified from

the Ansatz. The function x breaks the Poincare invariance in the four plane defined by

(X0, Xi) and therefore describes the nonextremality. The function z multiplies the four-

dimensional and the six-dimensional subspaces of the metric by different factors and can

be clearly interpreted as the warp factor. The function y basically amounts to a choice

of the parametrization of the radial coordinate, it introduces a natural ambiguity that we

discuss later on. Finally, the function w describes how the U(1) fiber is squashed with

respect to the four-dimensional base.

∗In the gauge theory [5] this symmetry is identified with the U(1)R. Restoring this symmetry at high

temperature is understood as chiral symmetry restoration [13].
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To reinforce the meaning of the metric functions x, y, z and w, it is convenient to

use that the intuition for these gravity solutions has been developed in the context of D3

branes. We recall that the relation with D3 branes can be established as follows:

ds2 = h−1/2(ρ)[−g1(ρ)dX2
0 + dXidXi] + h1/2(ρ)[g−1

2 (ρ)dρ2 + ρ2ds2
5] , (2.4)

with the identifications

h = e−4z−4x , ρ = ey+x+w , g1 = e−8x , e10y+2xdu2 = g−1
2 (ρ)dρ2 . (2.5)

Note that in the absence of nonextremality (x = 0), h = e4z which shows that z is truly the

warp factor. In the absence of U(1) fiber squashing, that is w = 0, one has e4y = ρ4 = 1
4u ,

the transverse 6-d space is the standard conifold with M5 = T 1,1; this shows that y amounts

to a choice of the radial coordinate. Small values of u correspond to large distances in ρ

and vice versa.

The Ansatz for the p-form fields is dictated by symmetries and will be taken to be as

in the original KT solution [8]:

F3 = Peψ ∧ (eθ1 ∧ eφ1 − eθ2 ∧ eφ2) ,

B2 = f(u)(eθ1 ∧ eφ1 − eθ2 ∧ eφ2) ,

F5 = F + ∗F , F = K(u)eψ ∧ eθ1 ∧ eφ1 ∧ eθ2 ∧ eφ2 . (2.6)

Note that the form of F3 is such that it describes a constant flux along a 3-cycle, that is,∫
Σ3
F3 = P . In some other notation this is called the number of fractional D3 branes. As

briefly alluded to in the introduction, the Bianchi identity for the 5-form, d ∗ F5 = dF5 =

H3 ∧ F3, implies

K(u) = Q+ 2Pf(u) . (2.7)

That is, in the presence of 3-form flux (P 6= 0), the flux of F5 varies with the radius.

The fact that K(u) depends on the coordinate u is very novel and has interesting physical

implications.

One can summarize the presence of flux in the background by noticing that all p-form

fields are completely determined by a constant P and a function of the radial coordinate

f(u).

2.1 The system

The system of equations was obtained in [12] by reducing the problem to a one dimensional

effective action for the radial evolution. We refer the reader to [12] for details of the

derivation. The idea is to plug the metric and all the forms in an effective action for IIB

supergravity and integrate with respect to all variables except the radial coordinate u. One

is thus lead to an effective classical mechanical system. The simplest equation is for the

nonextremality function x:

x′′ = 0 , x = au , a = const. (2.8)

– 4 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
1

The reason for such a simple equation is that, as explained in [12], it does not appear in

the effective one dimensional Lagrangian, except for its kinetic term.

The other functions y, w, z, f and Φ are to be determined from a coupled system of

equations:

10y′′ − 8e8y(6e−2w − e−12w) + Φ′′ = 0,

10w′′ − 12e8y(e−2w − e−12w)− Φ′′ = 0,

Φ′′ + e−Φ+4z−4y−4w(f ′2 − e2Φ+8y+8wP 2) = 0,

4z′′ − (Q+ 2Pf)2e8z − e−Φ+4z−4y−4w(f ′2 + e2Φ+8y+8wP 2) = 0,

(e−Φ+4z−4y−4wf ′)′ − P (Q+ 2Pf)e8z = 0. (2.9)

The integration constants are subject to the zero-energy constrain T + V = 0, i.e.

5y′2 − 2z′2 − 5w′2 − 1

8
Φ′2 − 1

4
e−Φ+4z−4y−4wf ′2 − e8y(6e−2w − e−12w)

+
1

4
eΦ+4z+4y+4wP 2 +

1

8
e8z(Q+ 2Pf)2 − 3a2 = 0 . (2.10)

As mentioned while introducing the Ansatz, the function y amounts to a choice of the radial

coordinate. This is relevant for understanding the dimensions of all quantities. Note that

in particular, the system (2.9) and the constrain (2.10) are invariant under ey → L0e
y and

u → L−4
0 u if we assume that Q → L4

0Q,P → L2
0P, a → L4

0a and f → L2
0f . We therefore

express all dimensionfull quantities in units where L0 = 1.

2.2 Some analytic solutions

In this section we review some known analytic solutions to the system. Our goal is to

develop the necessary intuition into the properties of the solution we are seeking. The

existence of exact analytical solutions provides us with the unique opportunity to test the

numerical method. The numerical treatment of these solutions will be presented in section

3 and this section can be considered as preparatory.

2.2.1 The blown up conifold

One of the simplest class of solutions to the above system has the form of R3,1×CY, where

CY stands for a Calabi-Yau space and more concretely a Ricci-flat space. The simplest

solution corresponds to the conifold and is defined by

e4y =
1

4u
, (2.11)

and all other functions are zero or constant in the case of the dilaton. In this class of

solutions we also find the blown up conifold† [18]. This solution is usually written as

ds2
6 = κ−1dr2 + r2

(
κe2

ψ + e2
θ1 + e2

φ1
+ e2

θ2 + e2
φ2

)
, (2.12)

†An adjustment in the periodicity of ψ is required.
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where

κ = 1− b6

r6
= e−10w, r = ey+w, b ≤ r <∞. (2.13)

This space has two nontrivial functions: y and w. The direct relation between r and u is

given by:

du = − dr

r5(1− b6

r6 )
. (2.14)

In general the relationship between the coordinates u and r is nontrivial but for large r we

recover small u ∼ 1/r4. The meaning of w is clearly to squash the U(1) fiber with respect

to the four-dimensional base. Note that as r →∞ the squashing vanishes w → 0.

2.2.2 Non-Extremal D3-brane solution: Singular and Regular

The general form of the nonextremal solutions contains a singular horizon. We should

consider it here to show how the singularity looks in the numerical analysis. Imposing

regularity of the horizon of the solution leads us to the standard nonextremal D3 brane

(henceforth we will call it just the ‘D3 solution’).

Let us consider the general system of equations (2.9) with P = 0 and f = 0, that is,

with no varying flux and also with Φ = 0 and w = 0. Then, we are left with (2.8) and the

following system:

y′′ − 4e8y = 0 , z′′ − 1

4
Q2e8z = 0 , (2.15)

i.e.

x′ = a , y′2 = b2 + e8y , z′2 = c2 + q2e8z , q ≡ 1

4
Q , (2.16)

with the integration constants a, b, c related by the zero-energy constraint

5b2 − 3a2 − 2c2 = 0 . (2.17)

Assuming that a, b, c ≥ 0 to preserve asymptotic conditions, the general solution is:

e4y =
b

sinh 4bu
, e4z =

c

q sinh 4c(u + k)
, e4x = e4au , (2.18)

where k is defined by e4ck = q−1(
√
q2 + c2 + c) ≡ γ . Note that the integration constant

k implies just a shift of variable u. To meet AdS asymptotic conditions we must choose

k = 0.

In terms of the familiar D3 brane Ansatz (2.4):

ρ4 = e4y+4x =
2be4(a−b)u

1− e−8bu
, g1 = g2 = g = e−8au , (2.19)

h = e−4z−4x =
q

2c
e4(c−a)u(1− e−8cu) . (2.20)

At small u (large ρ) we have

g = 1− 2a

ρ4
+ ... , h =

q

ρ4
+ ... , ρ4 =

1

4u
+ ... . (2.21)

– 6 –
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The general solution with arbitrary b and c reduces to the standard extremal D3-brane

background only if we set b and c proportional to a, satisfying the constrain (2.10). As

we have emphasized several times, for arbitrary values of b and c the solution is singular.

To see why that is the case, let us consider a singular case, discussed at length in [12], to

better understand the role of parameters in the singularity property of the solution. The

simplest special case is c = 0 where z satisfies the 1-st order equation z ′ = −qe4z. One can

solve the system (2.9) to get

e4y =
b

sinh 4bu
, e−4z = 4qu , e4x = e4au , b =

√
3

5
a , (2.22)

and thus

ρ4 = e4y+4x =
2be4(a−b)u

1− e−8bu
, h = e−4z−4x = 4que−4au , g = e−8au . (2.23)

Note that ρ is not well-defined as a radial coordinate for b 6= a. This solution has a

singular horizon at u = ∞ as described in [12]. Using the expression for RmnklR
mnkl one

concludes that the metric is singular. Most importantly, the area of the horizon, which

is proportional to exp(−2z + 3x + 5y) vanishes as u → ∞. Namely, it is proportional to

u1/2 exp(−(
√

15−3)u) −→ 0 as u→∞. One of the main criterium for the solution we are

seeking is thus, to have a finite nonzero area of the horizon. We have seen that the choice

of the constants a, b and c plays an important role in fulfilling this condition.

For small u (large distances) and in the limit a→ 0, we still get the standard asymptotic

extremal D3-brane behavior

ρ4 =
1

4u
+ ... , g = 1− 2a

ρ4
+ ... , h =

q

ρ4
+ ... . (2.24)

Note that in the large−ρ asymptotic the solution is like the standard D3. Most of the

problems, as was pointed out, are localized at the horizon.

The standard non-extremal D3-brane solution corresponds to the case when

b = c = a , (2.25)

This condition, together with the constrain (2.17) means that regularity picks a line in the

two dimensional surface which is the space of solutions. We will see that something similar

happens in the solution we construct in section 4. The solution of the system (2.9) takes

the form:

e4y =
a

sinh 4au
, e4z =

a

q sinh 4au
, e4x = e4au , (2.26)

Note that near the horizon (u→∞)

y = y∗ − au+
1

4
e−8au +O(e−16au) , z = z∗ − au+

1

4
e−8au +O(e−16au) , (2.27)

y∗ =
1

4
ln 2a , z∗ =

1

4
ln

2a

q
, (2.28)
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We can verified that this solution has finite area of the horizon. Indeed exp(−2z+3x+5y)→
exp(−2z∗ + 5y∗) which is finite, q1/2(2a)3/4, as we approach the horizon (u → ∞). We

see that the requirements on the asymptotics of the functions y and z in order to have a

horizon with finite area are very stringent.

A more recognizable form of this solution is given as

ds2 = h−1/2(gdX2
0 + dXidXi) + h1/2[g−1dρ2 + ρ2(dM5)2] , (2.29)

g = e−8x = 1− 2a

ρ4
, ρ4 =

2a

1− e−8au
, h = e−4z−4x =

q

ρ4
. (2.30)

Let us clarify the relationship between the radial coordinate u and the more standard

coordinate ρ. Using 2a = ρ4
0, we have

du =
dρ

ρ5

(
1− ρ4

0

ρ4

)−1

. (2.31)

This can be integrated to

u = − 1

ρ4
0

ln

(
1− ρ4

0

ρ4

)
. (2.32)

Note that in the domain of ρ0 ≤ ρ <∞ we have that u ranges in 0 < u <∞. The position

of the horizon which is finite in the ρ coordinate becomes infinite in the u coordinates.

Some thermodynamics and universality of regular nonextremal D3 brane hori-

zons

For the standard nonextremal D3 brane the horizon is located at ρ = ρ0, and the area is

given by:

A = V ω5R
2ρ3

0, (2.33)

where V is the volume due to the coordinates X i, R is the radius of AdS and appears in

the harmonic function as h = R4/ρ4, ω5 is the volume of T 1,1.

The natural temperature associated with the nonextremal D3 is obtained from the

regularity of the Euclidean section:

T =
ρ0

πR2
. (2.34)

Of course, the local temperature is Tlocal = TRρ/
√
ρ4 − ρ4

0 and decreases as ρ→∞. More

explicitly, the nonextremal D3 brane metric is of the form

ds2 =
ρ2

R2

(
(1− ρ4

0

ρ4
)dτ2 + dXidX

i

)
+
R2

ρ2

(
1− ρ4

0

ρ4

)−1

dρ2 +R2dω2
5. (2.35)

Near the horizon one can introduce the following coordinate

ρ = ρ0(1 +
r2

R2
). (2.36)

In terms of this radial coordinate in the limit of r → 0 the relevant part of the metric takes

the form

ds2 = dr2 + r2

(
2ρ0

R2
dτ

)2

. (2.37)

– 8 –
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For the angular part to have period 2π we obtain the above temperature as the inverse of

the period: T = 1/β.

In the u-coordinates the area of surface defined by a horizon at u = constant is

A = V ω5 exp (−2z + 3x+ 5y) . (2.38)

Given that the equation of motion for x has the general solution x = au we are forced into

the following situation. If the horizon is at u→∞, then in order for the area A to be finite

we need the following asymptotics for z and y:

z → α au+ z∗, y → β au+ y∗, (2.39)

with the condition that

−2α+ 5β = −3 (2.40)

Note that the regular nonextremal D3 brane corresponds to α = β = −1. The main

claim is that: The existence of a regular horizon fixes the asymptotic behavior of the metric

coordinates x, y and z.

Similarly, one can obtain an expression for the temperature. Namely, the relevant part

of the metric is

ds2 = e2z−6xdτ2 + e−2z+10ydu2. (2.41)

We introduce a new radial coordinate as:

ρ = ez−3x. (2.42)

We can now rewrite the metric as:

ds2 =
e−4z+10y+6x

(z′ − 3x′)2

[
dρ2 + ρ2

(
e2z−5y−3x(z′ − 3a) dτ

)2
]
. (2.43)

Note that, again, the requirement of finite temperature fixes the large-u asymptotic of vari-

ous metric functions to be 2z−5y−3x→ constant. Imposing absence of conical singularity

we find that the temperature defined as the inverse of the period is

T =
|α− 3a|

2π
e2z∗−5y∗ , (2.44)

where we used that near the horizon the asymptotic form of z ∼ αau + z∗ and similarly

for y.

2.2.3 The Klebanov-Tseytlin background

An important property of this solution is that it describes the asymptotic of most known

solutions with P 6= 0 and for small values of u, see for example [7 – 9, 17 – 20]. The KT

solution can be represented as:

x = 0 , w = 0 , Φ = 0 ,

– 9 –
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e−4y = 4u , f = f0 −
P

4
lnu , (2.45)

e−4z = K0u−
P 2

2
u(lnu− 1) , K0 = Q+ 2Pf0 ,

i.e.

e−4z = h = (Q+ 2Pf0 +
P 2

2
)u− P 2

2
u lnu . (2.46)

For convenience, in the case of P 6= 0 we can parameterize the function K as

K(u) = −P
2

2
ln(uL−4

P ). (2.47)

As mentioned before the KT solution is an attractor of sorts. Let us clarify to what

extend it is generic. The main claim is the following: Any solution of the class we considered

with P 6= 0 will asymptote to the KT solution if we impose a constant value of the dilaton in

the asymptotic region. We will not proceed to give a formal proof‡ of the above statement,

instead we will show how it comes about. If we impose the conditions of Φ = 0 and w = 0

in the system of equations we find that the equation for y yields:

y′′ = 4e8y , (2.48)

while the equation for the dilaton in (2.9) implies that

f ′2 = P 2e8y. (2.49)

One can explicitly solve this system and obtain that as u→ 0 one has f ∼ lnu.

Let us present the ten-dimensional analysis which provides an interesting perspective.

For very large values of ρ we have that the metric becomes essentially a cone over T 1,1,

in the effective one dimensional system language this is equivalent to having w = 0. The

metric is thus

dρ2 + ρ2ds2(M5). (2.50)

Imposing that we have P 6= 0 means that we are introducing a flux described by

F3 = PΩ3. (2.51)

If we also assume that the dilaton is constant we have and equation between the forms F3

and H3 which can schematically be written as |F3|2 = |H3|2. This equation can also be

understood as a consequence of having an imaginary self-dual G3 = H3 + iF3. Basically, it

can be understood as a consequence of ∗6 F3 = H3, where subscript means that we consider

the Hodge dual in the six dimensional space. This is a very simple equation to analyze. In

fact, one has

∗6 F3 = ∗6 PΩ3 = P
dρ

ρ
Ω2. (2.52)

‡A rigorous analysis of fixed points of the system (2.9) will be presented elsewhere.
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Thus, we determine that B2 = P Ω2 ln ρ, where Ω2 is some 2-form Hodge dual to Ω3. This

logarithm in B2 propagates to a logarithm in the metric via the equation for F5 which is

solved by

K(ρ) = Q+ 2P 2 ln ρ/ρ0. (2.53)

Clearly, this solution has a repulsive singularity around ρsing = ρ0 e
−Q/2P 2

which is locate

at small values of ρ meaning large values of u (see appendix A for more details on the

causal structure).

2.2.4 A singular generalization of the KT Solution

This solution is obtained by assuming that the dilaton is constant and w ≡ 0 in (2.9) and

allowing a 6= 0. The solution for y takes the form of

e4y =
b

sinh 4bu
, (2.54)

with b = a
√

3/5. Knowing y allows us to determine the other variables and one finds:

f = f∗ −
P

4
ln tanh 2bu ,

e−4z = K∗u+
P 2

8b

(
Li2(−e−4bu)− Li2(e−4bu)

)
, (2.55)

and we recall that K(u) = Q+ 2Pf(u). This solution was originally obtained in [11] as a

nonextremal generalization of the KT solution. It was subsequently studied in [12], where

it was established that it has a horizon which coincides with a singularity at u = ∞ and

that it reduces to a singular nonextremal D3 brane for P → 0.

2.2.5 Perturbative solution with varying flux around nonextremal D3

In this section we review a solution presented in [13]. This solution is obtained as a first

order correction in P to the nonextremal D3 brane background. The main idea is to

perform a perturbation around the regular nonextremal D3 brane (P = 0), in the regime

where P 2/K∗ ¿ 1 and it serves as a small parameter.

It is therefore convenient to rescale the fields by appropriate powers of P 2, setting

K(u) = K∗ + 2P 2F (u) , Φ(u) = P 2φ(u) , w(u) = P 2ω(u) , (2.56)

and

y → y+P 2ξ , e−4z → e−4z +P 2ζ , i.e. z → z+P 2η , ζ = −4e−4zη+O(P 2) , (2.57)

where y, z represent the pure D3-brane solution (2.2.2) e−4y = a−1 sinh 4au, e−4z =
K∗
4a sinh 4au, and ξ and ζ or η are corrections to it. The system (2.9) takes the following

explicit form:

10ξ′′ − 320e8yξ + φ′′ +O(P 2) = 0 ,

10ω′′ − 120e8yω − φ′′ +O(P 2) = 0 ,

φ′′ + e4z−4y(F ′2 − e8y) +O(P 2) = 0 ,

(e4z−4yF ′)′ −K∗e8z +O(P 2) = 0

4η′′ − 8K2
∗e

8zη − 4K∗Fe8z − e4z−4y(F ′2 + e8y) +O(P 2) = 0 (2.58)
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The constraint 2.10 becomes

10y′ξ′− 4z′η′− 1

4
e4z−4yF ′2− 40e8yξ+

1

4
e4z+4y +K2

∗e
8zη+

1

2
K∗e

8zF +O(P 2) = 0 . (2.59)

The solution takes the form

K(u) = K∗ −
P 2

2
ln
(
1− e−8au

)
, (2.60)

φ = φ∗ +
1

4K∗
Li2(e−8au), φ∗ = − π2

24K∗
.

The rest of the fields can be expressed in terms of a new radial coordinate of the form

v = 1− e−8au. (2.61)

In this case we obtain:

ξ =
1

20K∗
+

1

40K∗ v
((−2v + (v − 2) ln(1− v)) ln v + (v − 2)Li2(v)) ,

η =
v − 2

16K∗ v
(ln v ln(1− v) + Li2(v)) . (2.62)

Similarly, one obtains a simple equation for ω (see [13] for details).

Regime of validity, extrapolation and thermodynamics

The above solution was constructed with the assumption that P 2/K∗ ¿ 1. Since we

considered only the linearized approximation there is an intrinsic limit on the values of u.

Recall that for nonextremal D3 branes K(u) = Constant ∼ K∗ which counts the number

of D3 branes. For large values of u, the solution (2.60) becomes

K(u) ∼ K∗ +
P 2

2
e−8au. (2.63)

The second term is subleading for large u and thus in this region the solution remains valid.

As we decrease the value of u, we reach a point where the first and second term in K(u)

given by (2.60) are of the same order. This happens for

uc = − 1

8a
ln(1− e−2K∗P 2) ≈ 1

8a
e−2K∗/P 2

. (2.64)

The value uc is small but nonzero. Altogether, the regime of validity is:

P 2/K∗ ¿ 1, and uÀ uc =
1

8a
e−2K∗/P 2

. (2.65)

Nevertheless, the authors of [13] decided to explore the small u regime and found that

K(u) ∼ K∗ −
P 2

2
ln(8au). (2.66)

Amazingly, this form of the solution resembles the KT solution. The main idea of [13] is

to match the u→ 0 asymptotics of the solution (2.66) with the KT solution (see equation

3.8 of [13])

KKT = −P
2

2
ln(uL4

P ) (2.67)

– 12 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
1

Matching these two solutions, that is (2.66) and (2.67) we find that (5.15) of [13])

8aL−4
p = e2K∗/P 2

. (2.68)

This is the relationship between K∗ and a. Finally one has the relation between a – the

nonextremality parameter and the temperature§. Formula (5.16) in [13] is nothing but the

temperature of nonextremal D3 branes as a function of the radius of the horizon a1/4 and

the number of D3 branes K∗. Thus, we quote

T ∼ a1/4K
−1/2
∗ . (2.69)

Plugging this relation into (2.68) we find that to leading approximation

K∗ ∼
P 2

2
ln
T

Λ
, (2.70)

which is quoted in (5.44) of [13]. This expression is crucial in understanding the thermo-

dynamics of this class of solutions. One basically conjectures that the entropy per unit

volume satisfies

S

V T 3
∼ P 4

L8
P

(
ln
T

Λ

)2

. (2.71)

A similar formula was recently discussed in the context of holographic renormalization

in [15].

Not all is well with extrapolating the perturbed nonextremal D3 brane solution

This perturbative analysis is a very valuable tool to understanding the thermodynamics.

However, it has several shortcomings. First, the thermodynamics requires the understand-

ing of the region where the perturbation breaks down. Second, one can confirm that there

are obstructions to extending the solutions analytically past its regime of validity. One can

check that the constrain is not satisfied. In fact, expanding the constraint (2.59) for small

u gives a divergent term already at first order in P 2/K∗:

− a

2u
− 1

3
a2 +

8

3
a3u+O(u2). (2.72)

3. Numerical analysis of known solutions

To search for numerical solutions we rewrite (2.9) as a system of first order differential

equations. To ensure that the numerical solutions automatically satisfy the Hamilto-

nian constrain, the corresponding equations were modified to include explicitly the in-

formation given by expression (2.10). The resulting system contains ten coupled fields

§This is an approximate relation that ignores some issues of asymptotics.
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{y(u), z(u), w(u),Φ(u), f(u), ỹ(u), z̃(u), w̃(u), Φ̃(u), f̃(u)} related by the corresponding non-

linear first order differential equations:

dy

du
= ỹ,

dz

du
= z̃,

dw

du
= w̃,

dΦ

du
= Φ̃,

df

du
= f̃ , (3.1)

dỹ

du
= 2ỹ2 − 4

5
z̃2 − 2 w̃2 − 1

20
Φ̃2

+
2

5
e8y
(
6e−2w − e−12w

)
+

1

20
(Q+ 2Pf)2 e8z − 6

5
a2, (3.2)

dz̃

du
= 5ỹ2 − 2z̃2 − 5w̃2 − 1

8
Φ̃2

+
3

8
(Q+ 2Pf)2 e8z − e8y

(
6e−2w − e−12w

)
+

1

2
eΦ+4z+4y+4wP 2 − 3a2, (3.3)

dw̃

du
= −2ỹ2 +

4

5
z̃2 + 2w̃2 +

1

20
Φ̃2

+
8

5
e8y
(
e−2w − e−12w

)
− 1

20
(Q+ 2Pf)2 e8z +

6

5
a2, (3.4)

dΦ̃

du
= −20ỹ2 + 8z̃2 + 20w̃2 +

1

2
Φ̃2

+ 4e8y
(
6e−2w − e−12w

)
− 1

2
(Q+ 2Pf)2 e8z + 12a2, (3.5)

df̃

du
=
(

Φ̃− 4z̃ + 4ỹ + 4w̃
)
f̃ + P (Q+ 2Pf) eΦ+4z+4y+4w, (3.6)

where P , Q and a are the three parameters that determine the behavior of the solutions.

To solve it we use a combination of the methods implemented in the Maple software to find

numerical solutions of ordinary differential equations¶. For most calculations we have used

the seventh-eight order continuous Runge-Kutta method which, thanks to its adaptive

scheme, provides a great control upon the output accuracy. In those cases where the

stiffness typical of singularities was present, we switched to the Livermore Stiff Ode solver.

This also allowed us to get some information about the stability of the obtained solutions

with respect to the truncation error.

The option of yielding the output of the numerical computation as a list of procedures

is, in general, not very economical for long and cyclical calculations. However, it proved to

be convenient for the study of those quantities depending on the metric functions and on

the dilaton such as those describing the thermodynamics.

To use a numerical solver, one first needs to set up its arguments with values providing

outputs as accurate as required. We recall that in an adaptive scheme the discretization

of the independent variable domain is automatically refined until a theoretical measure of

the error goes below some tolerance previously fixed by the user. So, to set the optimal

tolerance we compared the known analytical solutions presented in the previous section

with numerical outputs, using the measure given by,

χ =
√∑

[vani (u)− vnumi (u)]2 , i = 1 · · · 10 . (3.7)

¶Our Maple sheets are available upon request.
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Figure 1: Plot of the difference between analytical solutions and the corresponding numerical

outputs: R3,1×CY (red), Klebanov-Tseytlin (black), standard nonextremal D3 (green) and singular

nonextremal generalization of Klebanov-Tseytlin (blue).

Here vani (u) and vnumi (u) stand for the value at u of each of our ten variables as given,

respectively, by the analytical and numerical solutions. Next, we must determine when

this measure can be taken as negligible. We say that χ is negligible if adding its value to

one of the parameters entering our system does not lead to a qualitative departure from

the analytical solution corrresponding to the unchanged value of the given parameter. For

instance, starting with a very low tolerance and a = 0 we gradually incremented a until

we found a qualitative departure from the KT solution. Then, we increased the tolerance

looking for the maximal value that keeps the just described situation essentially unchanged.

The same procedure was carried out with P and the standard non-extremal D3 solution.

This way we found that for a tolerance of 10−14, χmax = 10−10 can be safely regarded to

be negligible.

In figure 1 typical errors are presented for the following solutions: KT (black), singular

nonextremal generalization of KT (blue), D3 (green) and R3,1 × CY (red). The error

measure is given by Eq. (3.7) and the plots show that, after tuning up the numerical

method, the calculations typically yield reliable results for a wide range of values of the

independent variable u in the interval (10−3, 20), and of the involved parameters.

In the absence of a pattern solution to check for the accuracy of the computations, we

fortunately have the Hamiltonian constrain. Since our system was explicitly constructed

to yield only solutions satisfying equation (2.10), the necessary fulfillment of this condition

could be readily tested for every case we solved. As an example, we present in figure 2 the

numerical results for the constrain corresponding to the four study cases mentioned above.

3.1 Understanding the numerical solution

Next, we move into understanding the output of the numerical computation. Our goal is

to establish the existence of solutions with a nonsingular horizon and therefore we need to
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Figure 2: Plot of the numerical output of the constrain for four study cases: R3,1 × CY (red),

Klebanov-Tseytlin (black), standard nonextremal D3 (green) and singular nonextremal generaliza-

tion of Klebanov-Tseytlin (blue).

develop the appropriate criteria at u → ∞. At the same time we aim to make a definite

statement about the behavior of the solutions for small values of u.

It is important to note that since this is a nonlinear system of differential equations,

the asymptotic form of the solutions is typically very sensitive to the values of the ten

‘initial’ conditions. So, to search for a solution with given behavior at small and at large

values of u by just guessing the conditions at any of these boundaries it is an unfruitful

task. The simplest way of being certain of the existence of a black hole with any u → 0

asymptotics is the following.

First, let us recall that in u-coordinates the horizon is located at infinity. Therefore,

we face the difficulty of estimating how representative some given numbers are of the

actual solution near the horizon. Fortunately, assuming that the nature of the horizon is

of the type of nonextremal D3-brane we can use formula (2.32) to estimate how close to

the horizon we are. Numerically, we will consider a sequence for which ρ approaches the

horizon as ρ = ηρ0. Assuming that ρ4
0 = 2a we find that

2uηa = − ln(1− η−4). (3.8)

This quantity characterizes how close we are to the horizon. Note that

ρ− ρ0

ρ0
= η − 1. (3.9)

Alternatively, we can look at this formula as giving a prescription that tells us for different

values of a how far we have to go in u to reach the same “distance” from the horizon,

where we refer to distance as a concept on ρ. Hence, we use expression (3.8) to estimate

the value of u corresponding, for instance, to the 90% of the distance to the horizon.

Next, we set the initial conditions for our variables at this value of u90%, using expres-

sions (2.18) for the solution of the non-extremal D3 case. We then integrate the system
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forward and identify numerically the presence of a horizon. To do that we developed the

following set of criteria.

Let us start by considering a massive geodesic in the general metric (2.1). The effective

Lagrangian for radial motion is given by

L = −e2z−6xṫ2 + e−2z+10yu̇2. (3.10)

Normalizing the effective Lagrangian to be L = −1 and using the fact that the Lagrangian

does not explicitly depends on time we find an equation for the radial coordinate:

u̇2 + e2z−10y = E2 e6x−10y. (3.11)

This equation does not readily allows an interpretation in terms of classical motion of a

particle with energy E in a potential. For this aim, we find it useful to define a new variable

v given by dv = e−3x+5ydu. The geodesic equation then becomes

v̇2 + e2z−6x = E2, (3.12)

where the functions x, y and z are now viewed as functions of v. In this presentation we

can consider the function e2z−6x as an effective potential describing the classical motion of

a particle. Using this analogy and that dv/du > 0, we conclude that if the potential has

a wall at some large value of u it indicates a singularity and potential repulsive behavior

of the form characteristic to the negative mass Schwarzschild or KT. It thus works as a

necessary condition for the existence of a black hole that the potential develops no wall

for large values of u. In fact, the case of the regular non extremal D3 brane shows that

the potential actually vanishes near the horizon. We will thus, use the vanishing of the

effective potential as a first signal for a possible horizon.

Vanishing of the effective potential is not sufficient to declare the existence of a horizon

at that point. We have to take into account the fact that basically g00 ∼ e2z−6x and

therefore the potential can go to zero and the asymptotic time needs not diverge. The

possibility is given by some integrable singularity in the expression for the asymptotic

time.

This way, to clarify the existence of a horizon we next consider the proper and asymp-

totic times. For a massive particle with energy E we obtain that the affine parameter is

given by

τ =

∫ u

ul

e5y

√
E2e6x − e2z

du, (3.13)

On the other hand, the asymptotic time is

t =

∫ u

ul

e5y

√
E2e6x − e2z

e−2z+6xdu. (3.14)

Since we are assuming an AdS configuration, in the above definitions there are some sub-

tleties regarding the choice of the lower limit to ensure that the particle is in the energet-

ically allowed region. However, this will amount to a numerical correction which will not

modify the convergence of the above integrals when u→∞.
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To have the asymptotic infinity causally disconnected from the region behind the hori-

zon we demand the affine time to be finite while the asymptotic time must be unbounded.

For the numerical calculation of the above integrals we decided to implement a version of

the 3-5 points adaptive Simpson’s rule intended for controlling the accuracy while making

an optimal use of the output procedures calling for the solution of the differential system.

Finally, we check for the the finiteness of the horizon area. Note at this point that,

according to the analysis of subsection 2.2.2, we have the possibility of doing a cross-

check of the accuracy of the numerical output as well as of the assumptions made for that

analysis. What we have to do is to observe the asymptotics of variables y and z and, if

the horizon area and the corresponding temperature are finite, then y and z must exhibit

a linear behavior when u →∞, and, for a given a, the values of the corresponding slopes

should obey condition (2.40).

Having found a regular black hole, we integrate backward toward u = 0. In order to

have an idea of the analytical behavior hidden behind the numbers, we try several different

fits by solving least-squares problems of the difference between objective functions and the

numerical results. In the case of variables with regular behavior at the origin, we find the

coefficients of a truncated Taylor expansion. In those cases with singular behavior, we use

a set of singular real functions which includes the logarithm, the square root and rational

functions. As a cross check, we also looked for the best fit of the corresponding derivatives.

4. Numerical solutions with varying flux and nonextremal D3-like horizon

Following the recipe in the previous section we were able to find several solutions with

varying flux and nonextremal horizon of the form of D3 branes.

4.1 Behavior near the horizon

Recall that we are using the nonextremal D3 solution to fix the boundary conditions at

u90%. In other words, first we look for a certain point of the state-space (the space spanned

by our ten variables) crossed by a trajectory when P = 0. Next, we assume that, after

setting P 6= 0, close enough to that point there still remain trajectories leading to a

black hole solution. We guess the position of a new point in one of these trajectories by

looking to the corrections of the original point coordinates necessary for the Hamiltonian

constrain (2.10) still being satisfied. It turned out that this methodology is very effective

on the search for regular black holes.

In Figs. 3, 4, 5 and 6 solid black curves represent the metrics functions obtained

numerically for P = a = 1000 and Q = 1. We have chosen these values of the parameters

to make sure the solution is quite different from the D3 or KT solutions. In these same

figures, the corresponding nonextremal D3 solution, i.e., that with P = 0, have been drawn

with red dashed curves. As it can be observed, the numerical solution differs from the D3

one. The difference is more pronounced for u→ 0, but in Figs. 4 and 6 we note that even

close to the horizon there is some significant divergence between both solutions. Here we

need to take into account that for these values of the parameters u90% ≈ 0.0001.
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Figure 3: Plot of the g00 component of the metrics (2.1). The solid black curve represents the

numerical solution with P = a = 1000 and Q = 1, and the dashed red curve the analytical solution

with P = 0, a = 1000 and Q = 1. Here u90% ≈ 0.0001.

Figure 4: Plot of the gii component of the metrics (2.1). The solid black curve represents the

numerical solution with P = a = 1000 and Q = 1, and the dashed red curve the analytical solution

with P = 0, a = 1000 and Q = 1. Here u90% ≈ 0.0001.

Nevertheless, the numerical results certainly indicate the existence of a black hole. To

show that, in Figs. 7, 8, 9 and 10 we present, respectively, the natural logarithm of

the effective potential VEff ≡ e2z−6x entering equation (3.12), the proper and asymptotic
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Figure 5: Plot of the guu component of the metrics (2.1). The solid black curve represents the

numerical solution with P = a = 1000 and Q = 1, and the dashed red curve the analytical solution

with P = 0, a = 1000 and Q = 1. Here u90% ≈ 0.0001.

Figure 6: Plot of the gM5 component of the metrics (2.1). The solid black curve represents the

numerical solution with P = a = 1000 and Q = 1, and the dashed red curve the analytical solution

with P = 0, a = 1000 and Q = 1. Here u90% ≈ 0.0001

times as given by equations (3.13) and (3.14), and quantity e−2z+3x+5y which, as it was

mentioned in section 2.2.2, is proportional to the black hole horizon area when u→∞.

Indeed, the following key properties are observed: absence of a potential barrier in the

effective potential, the affine parameter converges to a finite value while the test particle

approaches the horizon, simultaneously the asymptotic time diverges, and the correspond-
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Figure 7: Plot of the logarithm of the effective potential. Here u90% ≈ 0.0001.

Figure 8: Plot of the affine parameter. Here u90% ≈ 0.0001.

ing horizon area is finite. Thus, we conclude that this solution represents a regular black

hole for u→∞.

As discussed earlier in subsection 3.1, we can assess the quality of these results by

analyzing the asymptotic behavior of fields y and z, which are plotted in figure 11. It is

observed that both fields behave as linear functions of u. The linear behavior is required

from the existence and regularity of the horizon, see discussion around (2.39). As a matter

of fact, a least-squares fit to a polynomial of this numerical output yields,

y∞ = 1.90027 − 999.942947u + 0.0000002u2 + 0.00000002u3 + 0.000000002u4 , (4.1)

z∞ = −0.000113 − 999.857345u + 0.0000004u2 + 0.0000001u3 + 0.00000001u4 . (4.2)

We see that higher order coefficients are negligible. Using that here a = 1000, we find

that α = −0.999857 and β = −0.999943, yielding −2α + 5β = −3.00000004. This is
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Figure 9: Plot of the asymptotic time. Here u90% ≈ 0.0001.

Figure 10: Plot of exp (−2z + 3x+ 5y). In the limit u → ∞ this quantity is proportional to the

horizon area. Here u90% ≈ 0.0001.

indeed, a strong result supporting the reliability of the numerical solution, as well as the

corresponding asymptotical analysis presented in the last part of subsection 2.2.2.

According with expression (2.44) and the above results, the temperature of this black

hole is equal to 0.035695 in the appropriate units.

4.2 Asymptotical behavior at infinity, u = 0

While studying the asymptotic behavior of the numerical solution at infinity, u → 0, we

have found that typically the z-field diverges at some u = using, while the remaining fields

seem to be analytical at that point. Numerically, the value of using can be positive or

negative. If using < 0, it means that the corresponding space-time is complete, and it is
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Figure 11: Plot of the fields y (black) and z (red). Here u90% ≈ 0.0001.

asymptotically flat. If using > 0, the corresponding space-time is singular in the sense that

it collapses at a finite value of the radial coordinate. In principle, there exists also the

possibility of using = 0. In this last case, the space-time is complete and it has a potential

wall at infinity, like in AdS. Independently of the value of using, the qualitative behavior of

the solutions is essentially the same. As we will see soon, obtaining one case or the other

depends mainly on the value of a, as well as, on the boundary conditions.

The interesting result here is that this singularity has a lot in common with the one

in the KT solution. If we assume that,

z
u→using

= −1

4
ln

[
Au ln

(
u

using

)]
, (4.3)

where A is a constant, then the corresponding derivative,

dz

du

u→using
= −1

4

ln
(

u
using

)
+ 1

u ln
(

u
using

) , (4.4)

depends only on using, which is given by the numerical method. In figure 12 the diamonds

represent the numerical solution for dz/du with P = 1, Q = 1, a = 0.01. For this case

u90% ≈ 173 and we found using ≈ 4.78571. As it can be noted, the behavior behind the

numbers is very accurately reproduced by the solid curve corresponding to the plot of the

function given by equation (4.4). The corresponding behavior for z(u) is shown in figure

13. The main difference between these expressions and the KT solution is that in the latter

the range of u is 0 < u < using, while here ∞ > u > using. This requires a change in the

sign of A and, indeed, we have found that here A ≈ 1.6 > 0, while for KT, A ≡ −P 2/2.

To confirm these findings, we fitted the solutions for y and f (and their derivatives), using
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Figure 12: Understanding the singular behavior near u = using . The diamonds represent the

numerical output of dz/du, while the curve is the plot of the function given by equation (4.4). Here

u90% ≈ 173 and using ≈ 4.78571.

Figure 13: Understanding the singular behavior near u = using . The diamonds represent the

numerical output of z, while the curve is the plot of the function given by equation (4.3). Here

u90% ≈ 173, using ≈ 4.78571 and A ≈ 1.6.

respectively the following expressions,

y ≈ −1

4
ln |4u| + y 0 + y 1 (u− using) + y 2 (u− using)2 , (4.5)

f ≈ − 1

2P

[
B ln

(
ue

using

)
+Q

]
+ f 0 + f 1 (u− using) + f 2 (u− using)2 , (4.6)

where e is the Euler number. Solving a least-squares problem for the coefficients, we

obtained y 0 = −0.041239, y 1 = 0.07182457, y 2 = −0.128777, B = 0.905268496, f 0 =

1.274356, f 1 = 0.285765, f 2 = −0.05121489. The fits are amazingly good, with χ2 <
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10−10 for both cases. Since, these variables are analytical at using, we tried a direct fit

with Taylor expansions for them, as well as for the remaining fields. The solution of the

corresponding least-squares problems yielded,

y(u) ≈ −0.783602 − 0.042953(u − using) + 0.003493(u − using)2

+ 0.001668(u − using)3 − 0.115651(u − using)4 + 3.027465(u − using)5, (4.7)

f(u) ≈ 0.34785 − 0.061501(u − using) + 0.008764(u − using)2

− 0.002828(u − using)3 + 0.099713(u − using)4 − 2.972385(u − using)5, (4.8)

Φ(u) ≈ 0.231423 − 0.027829(u − using) + 0.002474(u − using)2

− 0.002109(u − using)3 + 0.120818(u − using)4 − 3.620755(u − using)5, (4.9)

w(u) ≈ 0.028572 − 0.004287(u − using) + 0.000513(u − using)2

− 0.000065(u − using)3 + 0.000009(u − using)4 − 10−6(u− using)5. (4.10)

We recall that these results were checked by also fitting the corresponding derivatives.

Expanding the non-polynomial part of the expressions (4.5) and (4.6) it is not difficult to

test the direct correspondence between both approximations of the behavior of y and f

when u→ using.

Substituting in system (2.9) the ansatz (4.3) for the z-field and Taylor-like parametriza-

tions for the remaining fields near using, it can be proved that they provide an asymptotic

solution if the following condition is satisfied,

f1 = ±P e(Φ0+4y0+4w0) .

We can check if this analytic result is verified numerically. Indeed, using the numbers in

the Taylor expansion of the fields given above from the numerical analysis, and P = 1, we

can verify that

−0.061501 ≈ f1 = −e0.231423+4(−0.783602)+4(0.028572) ≈ −0.061501 .

Thus the analytic condition is indeed fulfilled by the numerical analysis. As a matter of

fact, we have found that this condition is satisfied by all the solutions we analyzed. For

instance, the solution with P = Q = 1 and a = 0.1 is regular at the origin, because

using = −0.056996 which corresponds to an asymptotically flat solution . For this case we

also verify that,

−37.008 ≈ f1 = −e0.36724+4(0.693744)+4(0.117277) ≈ −37.015 .

This is a very strong validation of our numerical results as well as of the analytical solution

for the u→ using asymptotics given by expressions (4.3), (4.5) and (4.6).

From the point of view of field theory the more interesting solution is the one with

using = 0. We have found that the position of the singularity near the origin depends

mainly on the values of a and of the boundary conditions. The dependence on a seems

to be described by a convex function using(a) having a minimum at some a = ac. This

minimum will be positive or negative depending on the boundary conditions. There is a
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unique set of boundary conditions that lead to using(ac) = 0. The main difficulty to find

such a solution is that, because of the finitness of the integration step, falling into a point

with using < 10−10 is very difficult when the integration starts far from that value. We

should also recall that ours is a nonlinear system, therefore it is sensitive to changes of the

parameters and strongly sensitive to changes of the boundary conditions. There is also a

restriction on varying the boundary conditions coming from the necessity of preserving the

black hole solution at u→∞. Nevertheless, we were able to obtain solutions near enough

to the origin (for instance, with |using| = O(10−6)) and independently of the sign we have

always found that the whole analysis in this section applies, so there is no particular reason

to expect the situation to be different for using = 0.

To finish this section we would like to remark that we observed that after reaching

the minimum, using gets larger while still increasing a. On the other hand, u90% always

decreases while increasing a. So, there exists a not necessarily high value of a such that

using = u90%. As a matter of fact, that is true for any distance until the horizon as

estimated by expresion (3.8). It implies that there seems to always exist a maximum value

of a such that there is no solution outside the black hole horizon.

4.3 Area and temperature dependence on the parameters

In this paper we will not attempt a full analysis of the dependence of the solution on the

three parameters a, P and Q, as well as on the boundary conditions. We concentrate on

explicitly constructing numerical solutions. Nevertheless, we would like to present some

observations that show the power of the numerical method to understand the physics behind

the more general solutions. The naive intuition is that the properties of the solution are

controlled by parameters like
P 2

Q
,

a

Q
,

a

P 2
. (4.11)

This was however, not supported by the numerical analysis.

As we already mentioned fixing P = 0 always yields the nonextremal D3 with regular

horizon. Increasing P from zero the solutions differs very slowly from the D3 solution.

For values lower than P = 10−6, the existing black hole solutions cannot be practically

distinguished from the D3 one. Nevertheless, it must be noted that some intervals of P

arise where black hole solutions cease to exist. For instance, we failed to find a black hole

for Q = 10−4 and a = 0.1 and P = 10−8. Above some value of P , the horizon area does

not seem to converge to a finite value. And this is not necessarily a very high value of P.

For instance, for Q = 10−4 and a = 0.1, as above, and P ≥ 5×10−2, we found nothing but

degenerate black hole solutions. So, we are left here with the range P ∈ [10−6, 5 × 10−2),

where the dependence on this parameter is very weak. In principle, as one increases the

value of P the temperature also increases. The horizon area has the same behavior. On the

other asymptotic regime of u, for small u, the larger P , the lower the value of using seems

to be. However, this behavior is altered near those islands where solutions with regular

horizons do not exist.

The dependence on Q appears to be the opposite of what we observed for P . For

instance, with P = 10−7 and a = 0.1, for Q < 10−10 the horizon area does not converge to
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Figure 14: The dependence of the black hole temperature on Q. The shaded regions mark some

intervals of Q where no black hole solution seems to exist.

a finite value. Increasing Q up to 4.4×10−4 some intervals arise where black hole solutions

exist and others where they do not. If a black hole solution exists, then for all value of Q it

has a finite horizon area. For 4.4×10−4 ≤ Q < 1020 all the solutions we found were regular

black holes. As in the D3 solution, Q does not seem to affect the asymptotic behavior of

y when u goes to infinity, but affects the asymptotics of z. As it is shown in figure 14, Q

is inversely proportional to the temperature. The horizon area has the inverse behavior.

This kind of dependence are proper also of the D3 solution. The value of using does not

seem to depend on Q.

The first thing we note while varying a is that, given a combination of P and Q, no

value of a exist (except a = 0) that could change one of the following results: no black hole,

singular black hole, regular black hole. The larger a, the higher the temperature, which is

also the kind of dependence observed in the D3 solution. In figure 15 we present the result

for P = 10−7 and Q = 1. The horizon area presents a similar behavior. Figure 15 suggests

that the horizon temperature and area blow up at some finite value of a. That confirms

the findings described at the end of section 4.2, where it was discussed the dependence on

a of the critical value using. It means that there seems to exists a maximal value of a above

which no black hole with finite temperature or area can exist.

5. Conclusions

In this paper we have solved numerically the IIB supergravity equations of motion in

the presence of varying flux. This class of solutions is controlled by three parameters

loosely identified as Q with the five-form flux, P with the three-form flux and a with

nonextremality.

We established that choosing the right boundary conditions, and for a wide range of

values of the parameters P , Q and a, we can obtain solutions representing black holes with
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Figure 15: The dependence of the black hole temperature on a.

finite horizon area. The criteria to assert the existence of the black hole are: no barrier of

the effective gravitational potential, convergence of the affine parameter, divergence of the

asymptotic time and finiteness of the horizon area. In this regime the obtained solutions

resemble but are not identical to the standard non-extremal D3 solution.

We also detected some curious behavior which deserves a more systematic study. Let

us summarize how the horizon temperature and its area depend on the parameters of the

solution. In the parameter space (P,Q) there are islands of values which do not lead to

black hole solution. This particular result weakly depends on the values of a. When a

black hole exist, the temperature and area of the horizon seem to be proportional to the

value of P . Above some value of P , the horizon area ceases to converge to a finite value.

The dependence of the horizon temperature and the area on Q is very much like that in the

D3 solution, i.e, the higher Q, the higher the horizon area but the lower its temperature.

Curiously, below some threshold value of Q the horizon area is no longer finite. Finally,

the dependence of the thermodynamical quantities on a is quite interesting. It resembles

the situation in the D3 solution, the area and the temperature are both proportional to a.

However, here our results indicate the possibility of the existence of a maximal value of a

above which finite-temperature black hole can not exist.

In the region asymptotically away from the horizon we were able to obtain a very

accurate description based on a combination of analytic and numerical methods. We found

that the solution has qualitatively a KT-like asymptotic behavior but with modification

allowing the solutions to exist for u > using. Depending on whether using is negative or

positive we have an asymptotically flat or a collapsing space-time. There seems to exist a

solution with using = 0 which is complete and behaves asymptotically as the AdS space-

time.

Let us end our remarks about the solution by presenting the dependence of using on the

parameters of the solution. While increasing a, using initially decreases, reaches a minimal
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value and then starts to increase. This implies the existence of a maximal value of a above

which no black hole with finite temperature or area can exist. The dependence of using
on the remaining parameters is more complex and deserves further study. Though weakly,

the value of using seems to be inversely proportional to P and almost independent of Q.

In this paper we have focused on constructing the solution. There are many ideas that

would be interesting to explore on this supergravity background. An important venue that

we plan to return to [21] is the possibility of a Hawking-Page phase transition between

the solution constructed here and the Klebanov-Strassler background. Some of the various

questions we plan to address in future publications have been addressed recently in simpler

supergravity backgrounds [22 – 26].
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A. Geodesic analysis of some typical solutions

In this appendix we explicitly discuss the geodesic structure of some known solutions. The

idea is to develop the necessary intuition to interpret the numerical results. We start by

considering geodesic motion in the general metric (2.1). The effective potential for radial

motion is given by

L = −e2z−6xṫ2 + e−2z+10yu̇2. (A.1)

Normalizing the effective Lagrangian to be L = −1 and using the fact that the Lagrangian

does not explicitly depends on time we find an equation for the radial coordinate:

u̇2 + e2z−10y = E2 e6x−10y. (A.2)

This equation does not readily allows an interpretation in terms of classical motion of a

particle with energy E in a potential. For this aim, we find it useful to define a new variable

v given by dv = e−3x+5ydu. The geodesic equation then becomes

v̇2 + e2z−6x = E2, (A.3)

where the functions x, y and z are now viewed as functions of v. In this presentation we can

consider the function e2z−6x as an effective gravitational potential describing the classical

motion of a particle.

A.1 AdS space

For AdS space in Poincare coordinates which are the natural coordinate for the D3 brane

we find

L = − r
2

L2
ṫ2 +

L2ṙ2

r2
. (A.4)
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The equation for radial motion as a function of the proper time τ is:

ṙ2 +
r2

L2
= E2. (A.5)

The corresponding potential is V (r) = r2/L2. This equation can be easily recognized as

the harmonic oscillator whose solution is

r(τ) = EL sin(
1

L
τ + φ), (A.6)

where φ is a phase that determines the initial condition for the motion of the particle.

Our main message is that “physical” experiments in AdS are quite different from

Schwarzschild. As we can see from the potential, AdS functions acts as a box and the

experiments we can perform involve sending a particle from the interior of AdS towards

the boundary r =∞. Such particle explores the boundary and returns back having reached

its maximum radius rmax = EL.

A.2 Nonextremal D3 branes

For the nonextremal D3 brane in the standard parametrization the equation for massive

geodesic is

ṙ2 +
r2

L2
− r4

0

L2 r2
= E2. (A.7)

Note that taking r0 = 0 yields an equation which we recognize as the harmonic oscillator

describing motion of massive particles in AdS. More generally, we can view this problem

as a classical mechanical problem in a potential given by

V (r) =
r2

L2
− r4

0

L2 r2
. (A.8)

For large r we have the typical harmonic potential of AdS but for r → r0 the potential

goes to zero.

The “physical” experiment here is slightly different. We have motion between r = r0

and some rmax given by:

(EL)2 = r2
max +

r4
0

r2
max

, (A.9)

Note that rmax in this case is larger than EL which corresponds to AdS with no black hole.

Namely,

r2
max =

(EL)2

2

(
1 +

√
1 +

4r4
0

(EL)4

)
(A.10)

The massive geodesic in the ρ coordinates has

τmassive =

∫
dρ√

E2 − ρ2

L2

(
1− ρ4

0
ρ4

)

t =

∫
dρ√

E2 − ρ2

L2

(
1− ρ4

0
ρ4

)
E L2

r2
(

1− ρ4
0
ρ4

) , (A.11)
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A.3 The structure of the KT solution

Let us verify that the KT solution has a behavior similar to the negative mass Schwarzschild

solution and that it can be detected by the effective potential (A.3). Consider a solution

of KT type with metric given by

ds2 = h−1/2dt2 + h1/2dr2 + . . . (A.12)

where the warp factor is of the form

h =
L4

r4
(1 + P ln

r

r0
), (A.13)

A massive geodesic follows an equation of the form:

ṙ2 +
r2

L2
√

1 + P ln r
r0

= E2, (A.14)

Let us, once again, consider the natural limits. For large values of r the potential is mainly

harmonic V (r) ∼ r2/ ln1/2(r). This behavior is typical of asymptotically AdS spaces as

we saw at the beginning of the section. For the purpose of a horizon we are interested in

whether or not the potential develops a wall for small values of r. Indeed, it is clear that

the denominator of the potential is zero, that is, near

rsing = r0 exp(−1/P ). (A.15)

Around this point the potential goes to infinity and the spacetime behaves like in the

neighborhood of a negative-mass Schwarzschild black hole. Before this point there is a

minimum of the potential located at

rmin = r0 exp(
P − 4

4P
) = rsinge

1/4. (A.16)
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